close
標題:
直立圓錐面積及體積問題!
有答案,求步驟! 問題在下圖中: http://img402.imageshack.us/i/16783010.png/
最佳解答:
12(a) 由πrl = 3.75π => l = 2.5圓錐的高度 = √(2.5^2 - 1.5^2) = 2(b) 由2πrh = 60π => h = 20這座塔的高度是22m13 弧AB = 15*108*π/180 = 9π因此2πr = 9π => r = 4.5 cm圓錐的底半徑是4.5 cm圓錐的高度 = √(15^2 - 4.5^2) = 14.3091容量 = (1/3)πr^2h = (1/3)π(4.5)^2(14.3091) = 303 cm^314(a) 曲面面積 = (1/4)π(8^2) = 50.3 cm^2(b) 弧BD = 8*90*π/180 = 4π因此2πr = 4π => r = 2 cm圓錐的底半徑是2 cm圓錐的高度 = √(8^2 - 2^2) = √60容量 = (1/3)πr^2h = (1/3)π(2)^2(√60) = 32.4 cm^3
其他解答:63D0B758E2D502CC
直立圓錐面積及體積問題!
此文章來自奇摩知識+如有不便請留言告知
發問:有答案,求步驟! 問題在下圖中: http://img402.imageshack.us/i/16783010.png/
最佳解答:
12(a) 由πrl = 3.75π => l = 2.5圓錐的高度 = √(2.5^2 - 1.5^2) = 2(b) 由2πrh = 60π => h = 20這座塔的高度是22m13 弧AB = 15*108*π/180 = 9π因此2πr = 9π => r = 4.5 cm圓錐的底半徑是4.5 cm圓錐的高度 = √(15^2 - 4.5^2) = 14.3091容量 = (1/3)πr^2h = (1/3)π(4.5)^2(14.3091) = 303 cm^314(a) 曲面面積 = (1/4)π(8^2) = 50.3 cm^2(b) 弧BD = 8*90*π/180 = 4π因此2πr = 4π => r = 2 cm圓錐的底半徑是2 cm圓錐的高度 = √(8^2 - 2^2) = √60容量 = (1/3)πr^2h = (1/3)π(2)^2(√60) = 32.4 cm^3
其他解答:63D0B758E2D502CC
文章標籤
全站熱搜
留言列表