標題:
Remainder
發問:
Find the remainder when 98^123456 is divided by 100. Show steps please. Many thanks. Simon YAU
最佳解答:
21 ≡ 2 (mod 100) 22 ≡ 4 (mod 100) 23 ≡ 8 (mod 100) 2?≡ 16 (mod 100) 2? ≡ 32 (mod 100) 2? ≡ 64 (mod 100) 2? ≡ 28 (mod 100) 2? ≡ 56 (mod 100) 2? ≡ 12 (mod 100) 21o ≡ 24 (mod 100) 211 ≡ 48 (mod 100) 212 ≡ 96 (mod 100) 213 ≡ 92 (mod 100) 21?≡ 84 (mod 100) 21? ≡ 68 (mod 100) 21? ≡ 36 (mod 100) 21? ≡ 72 (mod 100) 21? ≡ 44 (mod 100) 21? ≡ 88 (mod 100) 22o ≡ 76 (mod 100) 221≡ 52 (mod 100) 222 ≡ 4 (mod 100) ........... ∴ 98^123456 (mod 100) ≡ 2^123456 (mod 100) ≡ 2^(1 + 123440 + 16) (mod 100) ≡ 2^16 (mod 100) ≡ 36 2012-05-30 00:51:46 補充: Corr: ≡ 2^(1 + 123440 + 16) (mod 100) should be : ≡ 2^(1 + 123440 + 15) (mod 100) ≡ 2^16 (mod 100) ≡ 36
此文章來自奇摩知識+如有不便請留言告知
其他解答:1C924F1C0172E337
留言列表